Offcanvas

Active Machine Learning

딥러닝의 한 갈래 '지도학습'이란?

머신러닝은 데이터로부터 자동으로 모델을 생성하는 알고리즘이 포함된 인공지능의 한 지류다. 머신러닝의 종류는 크게 지도학습(Supervised Learning), 비지도학습(Unsupervised Learning), 강화학습(Reinforcement Learning), 능동적 머신러닝(Active Machine Learning) 등 4가지가 있다. 강화학습과 능동적 머신러닝은 상대적으로 새롭기 때문에 이런 종류의 목록에서 생략될 때도 있다. 또한 반 지도학습(Semi-supervised Learning)도 목록에 포함해야 한다.   지도학습이란 무엇인가? 지도학습은 올바른 답변(목표 값)으로 태그된 학습 데이터부터 출발한다. 학습 과정 후 이미 태그되지 않은 유사한 데이터에 대한 답을 예측할 수 있는 조정된 웨이트를 가진 모델을 얻게 된다. 오버피팅이나 언더피팅 없이 정확도가 높은 모델을 훈련해야 한다. 정확도가 높다는 것은 손실 함수를 최적화했다는 뜻이다. 분류 문제 맥락에서 정확도는 모델이 올바른 출력을 생성하는 예의 비율이다. 오버피팅이란 모델이 관찰한 데이터와 너무 긴밀하게 연관되어 있어서 관찰하지 않은 데이터로 일반화하지 않는다는 뜻이다. 언더피팅은 모델이 데이터의 기본 트렌드를 포착할 만큼 충분히 복잡하지 않다는 뜻이다. 손실 함수는 모델의 ‘나쁨’을 반영하기 위해 선택한다. 최고의 모델을 찾기 위해 손실을 최소화한다. 수치적 (회귀) 문제의 경우 손실 함수는 MSE(Mean Square Error)인 경우가 많으며 RMSE(Root Mean Squared Error)나 RMSD(Root Mean Square Deviation)으로도 표현된다. 이는 데이터 포인트와 모델 곡선 사이의 유클리드 거리에 해당한다. 분류 (비수치적) 무제의 경우 손실 함수는 ROC 곡선 아래의 영역(AUC), 평균 정확도, 정밀도 기억, 로그 손실 등 일련의 조치 중 하나에 기초할 수 있다. (AUC와 ROC 곡선에 대한 설명은 아래를 참조한다). 오버...

통계 지도학습 비지도학습 능동적 머신러닝 Unsupervised Learning Supervised learning Active Machine Learning reinforcement learning 강화학습 신경망 데이터 정제 함수 인공지능 하이퍼파라미터

2019.06.21

머신러닝은 데이터로부터 자동으로 모델을 생성하는 알고리즘이 포함된 인공지능의 한 지류다. 머신러닝의 종류는 크게 지도학습(Supervised Learning), 비지도학습(Unsupervised Learning), 강화학습(Reinforcement Learning), 능동적 머신러닝(Active Machine Learning) 등 4가지가 있다. 강화학습과 능동적 머신러닝은 상대적으로 새롭기 때문에 이런 종류의 목록에서 생략될 때도 있다. 또한 반 지도학습(Semi-supervised Learning)도 목록에 포함해야 한다.   지도학습이란 무엇인가? 지도학습은 올바른 답변(목표 값)으로 태그된 학습 데이터부터 출발한다. 학습 과정 후 이미 태그되지 않은 유사한 데이터에 대한 답을 예측할 수 있는 조정된 웨이트를 가진 모델을 얻게 된다. 오버피팅이나 언더피팅 없이 정확도가 높은 모델을 훈련해야 한다. 정확도가 높다는 것은 손실 함수를 최적화했다는 뜻이다. 분류 문제 맥락에서 정확도는 모델이 올바른 출력을 생성하는 예의 비율이다. 오버피팅이란 모델이 관찰한 데이터와 너무 긴밀하게 연관되어 있어서 관찰하지 않은 데이터로 일반화하지 않는다는 뜻이다. 언더피팅은 모델이 데이터의 기본 트렌드를 포착할 만큼 충분히 복잡하지 않다는 뜻이다. 손실 함수는 모델의 ‘나쁨’을 반영하기 위해 선택한다. 최고의 모델을 찾기 위해 손실을 최소화한다. 수치적 (회귀) 문제의 경우 손실 함수는 MSE(Mean Square Error)인 경우가 많으며 RMSE(Root Mean Squared Error)나 RMSD(Root Mean Square Deviation)으로도 표현된다. 이는 데이터 포인트와 모델 곡선 사이의 유클리드 거리에 해당한다. 분류 (비수치적) 무제의 경우 손실 함수는 ROC 곡선 아래의 영역(AUC), 평균 정확도, 정밀도 기억, 로그 손실 등 일련의 조치 중 하나에 기초할 수 있다. (AUC와 ROC 곡선에 대한 설명은 아래를 참조한다). 오버...

2019.06.21

IDG 설문조사

회사명:한국IDG 제호: ITWorld 주소 : 서울시 중구 세종대로 23, 4층 우)04512
등록번호 : 서울 아00743 등록일자 : 2009년 01월 19일

발행인 : 박형미 편집인 : 박재곤 청소년보호책임자 : 한정규
사업자 등록번호 : 214-87-22467 Tel : 02-558-6950

Copyright © 2022 International Data Group. All rights reserved.

10.5.0.9