Offcanvas

BigML

'머신러닝을 더 쉽게' 6가지 툴

‘머신러닝(ML)’이라는 말은 마법 같은 아우라로 가득 차 있다. 기계가 학습하도록 가르치기란 아직 일반인의 영역으로 보기 어렵다. 오늘날 이 용어는 데이터를 금으로 바꾸는 데이터 사이언티스트 같은 매우 전문적인 연금술사들의 영역이다.   단 이제 머신러닝 툴은 약간의 용기와 동기만 있다면 누구나 버튼을 눌러 기계가 중요한 것을 학습할 수 있도록 하는 수준으로 발전해가고 있다. 단번에 되는 정도는 아닐지언정 데이터를 모아 실행 가능한 통찰력으로 바꾸는 작업이 충분히 자동화되어가는 중이며, 동기를 가진 스마트한 사람들이라면 도전할만한 수준으로 진보했다.  이런 느린 르네상스는 비즈니스 세계의 많은 사람들이 이미 데이터를 꽤 능숙하게 다루게 되면서 이뤄졌다. 숫자로 가득 찬 스프레드시트는 모든 비즈니스의 의사 결정자들의 언어다. 머신러닝을 다루게 해주는 각종 새로운 툴은 기본적으로 테이블 데이터를 유용한 답변으로 바꾸는 여러 전략과 옵션의 조합이다. 이 툴의 강점은 데이터 수집, 가능한 경우 구조와 일관성 추가, 계산 시작 등의 번거로운 작업을 처리할 수 있는 능력이다. 데이터 수집 과정과 정보를 행과 열로 유지하는 단조로운 작업이 간소화된다. 이 툴은 아직 이 모든 학습을 스스로 수행할 만큼 충분히 스마트하지 못하다. 적절한 질문을 던지고 적절한 곳을 살펴야 한다. 하지만 이 툴을 통해 더욱 신속하게 답을 얻을 수 있기 때문에 더 넓은 영역을 담당하고 더 많은 곳을 조사할 수 있게 된다.  AutoML : 머신러닝의 민주화 최근 머신러닝 알고리즘 분야에는 추가적인 자동화 메타 계층이 수반된다는 의미의 새로운 유행어인 ‘AutoML’이 등장했다. 전통적인 알고리즘은 옵션과 파라미터가 많았다. 데이터 사이언티스트들은 종종 예측 가능성이 가장 높은 규칙을 찾을 때까지 이런 것들을 조정하느라 시간의 80-99%를 소요하곤 한다. AutoML은 여러 옵션을 시도하고 시험한 후 추가적인 작업를 거쳐 이 단계를 자동화한다. 머신러닝...

스플렁크 AutoML H2o 래피드마이너 BigML 데이터로봇 R 스튜디오 머신러닝 툴

2019.09.06

‘머신러닝(ML)’이라는 말은 마법 같은 아우라로 가득 차 있다. 기계가 학습하도록 가르치기란 아직 일반인의 영역으로 보기 어렵다. 오늘날 이 용어는 데이터를 금으로 바꾸는 데이터 사이언티스트 같은 매우 전문적인 연금술사들의 영역이다.   단 이제 머신러닝 툴은 약간의 용기와 동기만 있다면 누구나 버튼을 눌러 기계가 중요한 것을 학습할 수 있도록 하는 수준으로 발전해가고 있다. 단번에 되는 정도는 아닐지언정 데이터를 모아 실행 가능한 통찰력으로 바꾸는 작업이 충분히 자동화되어가는 중이며, 동기를 가진 스마트한 사람들이라면 도전할만한 수준으로 진보했다.  이런 느린 르네상스는 비즈니스 세계의 많은 사람들이 이미 데이터를 꽤 능숙하게 다루게 되면서 이뤄졌다. 숫자로 가득 찬 스프레드시트는 모든 비즈니스의 의사 결정자들의 언어다. 머신러닝을 다루게 해주는 각종 새로운 툴은 기본적으로 테이블 데이터를 유용한 답변으로 바꾸는 여러 전략과 옵션의 조합이다. 이 툴의 강점은 데이터 수집, 가능한 경우 구조와 일관성 추가, 계산 시작 등의 번거로운 작업을 처리할 수 있는 능력이다. 데이터 수집 과정과 정보를 행과 열로 유지하는 단조로운 작업이 간소화된다. 이 툴은 아직 이 모든 학습을 스스로 수행할 만큼 충분히 스마트하지 못하다. 적절한 질문을 던지고 적절한 곳을 살펴야 한다. 하지만 이 툴을 통해 더욱 신속하게 답을 얻을 수 있기 때문에 더 넓은 영역을 담당하고 더 많은 곳을 조사할 수 있게 된다.  AutoML : 머신러닝의 민주화 최근 머신러닝 알고리즘 분야에는 추가적인 자동화 메타 계층이 수반된다는 의미의 새로운 유행어인 ‘AutoML’이 등장했다. 전통적인 알고리즘은 옵션과 파라미터가 많았다. 데이터 사이언티스트들은 종종 예측 가능성이 가장 높은 규칙을 찾을 때까지 이런 것들을 조정하느라 시간의 80-99%를 소요하곤 한다. AutoML은 여러 옵션을 시도하고 시험한 후 추가적인 작업를 거쳐 이 단계를 자동화한다. 머신러닝...

2019.09.06

데이터 과학자와 개발자를 위한 머신러닝 툴 17선

현업이 업무에 인공지능 접목을 점점 더 많이 요구하는 가운데 대규모 데이터 세트에서 시스템을 학습하는 머신러닝은 여러 가지 이점을 제공하는 것으로 알려졌다. 이는 금융에서 사기 예방을 위한 예측 모델 구축을 의미할 수 있다. 예를 들어 소매기업은 고객에게 더 나은 권장 사항을 제시할 수 있다. 구글, 마이크로소프트, IBM, AWS는 모두 각각의 클라우드 플랫폼을 통해 머신러닝 API를 제공하므로 개발자는 알고리즘의 복잡성을 일부 추상화하여 서비스를 보다 쉽게 만들 수 있다. 또한 데이터 과학자들이 좀더 깊이 있는 수준에서 사용할 수 있는 오픈소스 딥러닝 프레임워크가 점점 늘어나는 추세다. 다음은 데이터 과학자와 개발자가 사용하는 데 편리한 머신러닝 툴이다. 1. 아마존 세이지메이커 많은 데이터 과학자와 개발자는 이미 상용 클라우드 컴퓨팅 플랫폼인 아마존 웹 서비스(AWS)에서 교육 모델을 실행하고 있다. 2017년 11월에 열린 AWS 리:인벤트에서 공개된 세이지메이커는 머신러닝 개발 시 일반적으로 필요했던 수작업을 상당 부분 없애준다는 점에서 주목받고 있다. 세이지메이커는 인프라를 프로비저닝하고 교육 모델을 관리 및 조정하지 않고도 비즈니스 애플리케이션에 머신러닝 알고리즘을 작성, 교육, 배포할 수 있는 플랫폼이다. 이 플랫폼은 데이터 탐색, 정제, 전처리를 위해 주피터(Jupyter) 노트북 통합 개발 환경(IDEs)을 호스팅했다. 사용자는 AWS 알고리즘을 선택하여 텐서플로 같은 유명 프레임워크를 가져오거나 속메이커(SockMaker)에서 도커 컨테이너로 자체 알고리즘을 작성하고 배포할 수 있는 분산 모델 구축, 교육, 검증 서비스를 이용할 수 있다. 교육을 위해서는 S3의 위치와 사용하려는 인스턴스를 지정하기만 하면 된다. 세이지메이커는 자동 확장 및 데이터 파이프라인이 있는 격리된 클러스터와 소프트웨어 정의 네트워크를 실행하여 교육을 시작한다. HTTPs ...

구글 카페 CNTK DSSTNE 벨레스 알리윤 네온 세이지메이커 DMLT 빅ML BigML 텐서플로 스파크 기계학습 빅데이터 IBM 마이크로소프트 AWS 왓슨 아파치 데이터 과학자 알리바바 API 아마존 웹 서비스 Wise.io

2017.12.05

현업이 업무에 인공지능 접목을 점점 더 많이 요구하는 가운데 대규모 데이터 세트에서 시스템을 학습하는 머신러닝은 여러 가지 이점을 제공하는 것으로 알려졌다. 이는 금융에서 사기 예방을 위한 예측 모델 구축을 의미할 수 있다. 예를 들어 소매기업은 고객에게 더 나은 권장 사항을 제시할 수 있다. 구글, 마이크로소프트, IBM, AWS는 모두 각각의 클라우드 플랫폼을 통해 머신러닝 API를 제공하므로 개발자는 알고리즘의 복잡성을 일부 추상화하여 서비스를 보다 쉽게 만들 수 있다. 또한 데이터 과학자들이 좀더 깊이 있는 수준에서 사용할 수 있는 오픈소스 딥러닝 프레임워크가 점점 늘어나는 추세다. 다음은 데이터 과학자와 개발자가 사용하는 데 편리한 머신러닝 툴이다. 1. 아마존 세이지메이커 많은 데이터 과학자와 개발자는 이미 상용 클라우드 컴퓨팅 플랫폼인 아마존 웹 서비스(AWS)에서 교육 모델을 실행하고 있다. 2017년 11월에 열린 AWS 리:인벤트에서 공개된 세이지메이커는 머신러닝 개발 시 일반적으로 필요했던 수작업을 상당 부분 없애준다는 점에서 주목받고 있다. 세이지메이커는 인프라를 프로비저닝하고 교육 모델을 관리 및 조정하지 않고도 비즈니스 애플리케이션에 머신러닝 알고리즘을 작성, 교육, 배포할 수 있는 플랫폼이다. 이 플랫폼은 데이터 탐색, 정제, 전처리를 위해 주피터(Jupyter) 노트북 통합 개발 환경(IDEs)을 호스팅했다. 사용자는 AWS 알고리즘을 선택하여 텐서플로 같은 유명 프레임워크를 가져오거나 속메이커(SockMaker)에서 도커 컨테이너로 자체 알고리즘을 작성하고 배포할 수 있는 분산 모델 구축, 교육, 검증 서비스를 이용할 수 있다. 교육을 위해서는 S3의 위치와 사용하려는 인스턴스를 지정하기만 하면 된다. 세이지메이커는 자동 확장 및 데이터 파이프라인이 있는 격리된 클러스터와 소프트웨어 정의 네트워크를 실행하여 교육을 시작한다. HTTPs ...

2017.12.05

회사명:한국IDG 제호: ITWorld 주소 : 서울시 중구 세종대로 23, 4층 우)04512
등록번호 : 서울 아00743 등록일자 : 2009년 01월 19일

발행인 : 박형미 편집인 : 박재곤 청소년보호책임자 : 한정규
사업자 등록번호 : 214-87-22467 Tel : 02-558-6950

Copyright © 2022 International Data Group. All rights reserved.

10.4.0.13