Offcanvas

������������������

'머신러닝을 더 쉽게' 6가지 툴

‘머신러닝(ML)’이라는 말은 마법 같은 아우라로 가득 차 있다. 기계가 학습하도록 가르치기란 아직 일반인의 영역으로 보기 어렵다. 오늘날 이 용어는 데이터를 금으로 바꾸는 데이터 사이언티스트 같은 매우 전문적인 연금술사들의 영역이다.   단 이제 머신러닝 툴은 약간의 용기와 동기만 있다면 누구나 버튼을 눌러 기계가 중요한 것을 학습할 수 있도록 하는 수준으로 발전해가고 있다. 단번에 되는 정도는 아닐지언정 데이터를 모아 실행 가능한 통찰력으로 바꾸는 작업이 충분히 자동화되어가는 중이며, 동기를 가진 스마트한 사람들이라면 도전할만한 수준으로 진보했다.  이런 느린 르네상스는 비즈니스 세계의 많은 사람들이 이미 데이터를 꽤 능숙하게 다루게 되면서 이뤄졌다. 숫자로 가득 찬 스프레드시트는 모든 비즈니스의 의사 결정자들의 언어다. 머신러닝을 다루게 해주는 각종 새로운 툴은 기본적으로 테이블 데이터를 유용한 답변으로 바꾸는 여러 전략과 옵션의 조합이다. 이 툴의 강점은 데이터 수집, 가능한 경우 구조와 일관성 추가, 계산 시작 등의 번거로운 작업을 처리할 수 있는 능력이다. 데이터 수집 과정과 정보를 행과 열로 유지하는 단조로운 작업이 간소화된다. 이 툴은 아직 이 모든 학습을 스스로 수행할 만큼 충분히 스마트하지 못하다. 적절한 질문을 던지고 적절한 곳을 살펴야 한다. 하지만 이 툴을 통해 더욱 신속하게 답을 얻을 수 있기 때문에 더 넓은 영역을 담당하고 더 많은 곳을 조사할 수 있게 된다.  AutoML : 머신러닝의 민주화 최근 머신러닝 알고리즘 분야에는 추가적인 자동화 메타 계층이 수반된다는 의미의 새로운 유행어인 ‘AutoML’이 등장했다. 전통적인 알고리즘은 옵션과 파라미터가 많았다. 데이터 사이언티스트들은 종종 예측 가능성이 가장 높은 규칙을 찾을 때까지 이런 것들을 조정하느라 시간의 80-99%를 소요하곤 한다. AutoML은 여러 옵션을 시도하고 시험한 후 추가적인 작업를 거쳐 이 단계를 자동화한다. 머신러닝...

스플렁크 AutoML H2o 래피드마이너 BigML 데이터로봇 R 스튜디오 머신러닝 툴

2019.09.06

‘머신러닝(ML)’이라는 말은 마법 같은 아우라로 가득 차 있다. 기계가 학습하도록 가르치기란 아직 일반인의 영역으로 보기 어렵다. 오늘날 이 용어는 데이터를 금으로 바꾸는 데이터 사이언티스트 같은 매우 전문적인 연금술사들의 영역이다.   단 이제 머신러닝 툴은 약간의 용기와 동기만 있다면 누구나 버튼을 눌러 기계가 중요한 것을 학습할 수 있도록 하는 수준으로 발전해가고 있다. 단번에 되는 정도는 아닐지언정 데이터를 모아 실행 가능한 통찰력으로 바꾸는 작업이 충분히 자동화되어가는 중이며, 동기를 가진 스마트한 사람들이라면 도전할만한 수준으로 진보했다.  이런 느린 르네상스는 비즈니스 세계의 많은 사람들이 이미 데이터를 꽤 능숙하게 다루게 되면서 이뤄졌다. 숫자로 가득 찬 스프레드시트는 모든 비즈니스의 의사 결정자들의 언어다. 머신러닝을 다루게 해주는 각종 새로운 툴은 기본적으로 테이블 데이터를 유용한 답변으로 바꾸는 여러 전략과 옵션의 조합이다. 이 툴의 강점은 데이터 수집, 가능한 경우 구조와 일관성 추가, 계산 시작 등의 번거로운 작업을 처리할 수 있는 능력이다. 데이터 수집 과정과 정보를 행과 열로 유지하는 단조로운 작업이 간소화된다. 이 툴은 아직 이 모든 학습을 스스로 수행할 만큼 충분히 스마트하지 못하다. 적절한 질문을 던지고 적절한 곳을 살펴야 한다. 하지만 이 툴을 통해 더욱 신속하게 답을 얻을 수 있기 때문에 더 넓은 영역을 담당하고 더 많은 곳을 조사할 수 있게 된다.  AutoML : 머신러닝의 민주화 최근 머신러닝 알고리즘 분야에는 추가적인 자동화 메타 계층이 수반된다는 의미의 새로운 유행어인 ‘AutoML’이 등장했다. 전통적인 알고리즘은 옵션과 파라미터가 많았다. 데이터 사이언티스트들은 종종 예측 가능성이 가장 높은 규칙을 찾을 때까지 이런 것들을 조정하느라 시간의 80-99%를 소요하곤 한다. AutoML은 여러 옵션을 시도하고 시험한 후 추가적인 작업를 거쳐 이 단계를 자동화한다. 머신러닝...

2019.09.06

머신러닝과 예측 알고리즘에 '안성맞춤' 데이터 과학 툴 10선

기업이 과거보다 훨씬 빠르게 데이터를 다루고자 하면서 데이터 과학자들이 알고리즘을 구축하고 배포하도록 해주는 플랫폼이 점점 더 중요해지고 있다. 가트너는 데이터 과학 플랫폼을 단순히 "머신러닝 솔루션을 만드는 엔진"으로 정의한다. 이 기사에서는 가트너의 정의를 확대해 데이터 과학 업무팀이 코드를 공동 작업하고 직접 배포해 데이터 과학 솔루션을 안내할 수 있는 모든 것을 포함했다. 데이터 과학 플랫폼은 상대적으로 덜 성숙했고 아직은 묘책이 없음을 기억하는 것이 중요하다. 테셀라 애널리틱스(Tessella Analytics)의 수석 분석 전략가인 매튜 존스는 <컴퓨터월드UK(ComputerworldUK)>와의 인터뷰에서 "데이터 과학은 플러그 앤드 플레이가 아니다"고 말했다. 이어서 "플랫폼은 아웃소싱해도 괜찮다. 하지만, 존재하는 데이터와 컨텍스트를 이해하는 사람은 교육을 받아야 한다. 기술 공급 업체에게 데이터 과학을 아웃소싱하는 경우 비즈니스와 데이터를 확실히 이해해야 한다"고 밝혔다. 이를 염두에 두고 오픈소스부터 기존 솔루션 업체까지 현재 기업이 가장 많이 사용하는 데이터 과학 플랫폼을 소개한다.   1. H2O.ai H2O.ai는 기업이 비즈니스 문제에 신속하고 확장할 수 있는 예측 분석을 적용하도록 지원하는 오픈소스 시스템 학습 플랫폼이다. 이 플랫폼의 명성은 점점 더 올라가고 있으며, 이전 버전은 가트너 매직 쿼드런트에서 비저너리로 선정됐으며 2018 데이터 과학 및 머신러닝 플랫폼 매직 쿼드런트에서 리더로 꼽혔다. 가트너는 딥러닝, 머신러닝 자동화, 하이브리드 클라우드 지원, 오픈소스 통합에 대한 기술 역량과 이베이, 캐피탈원, 컴캐스트를 포함한 고객사를 위한 강력한 지원을 높이 평가했다. 코드 중심 툴체인은 뛰어난 유연성과 확장성을 제공하지만 가장 사용자 친화적인 제품은 아니다. 2. 마이크...

SAS 래피드마이너 다타이쿠 도미노 데이터랩 데이터 과학 분석 예측 기계학습 스플렁크 모델링 클라우데라 데이터 과학자 애저 마이크로소프트 IBM 가트너 빅데이터 H2O.ai

2018.04.19

기업이 과거보다 훨씬 빠르게 데이터를 다루고자 하면서 데이터 과학자들이 알고리즘을 구축하고 배포하도록 해주는 플랫폼이 점점 더 중요해지고 있다. 가트너는 데이터 과학 플랫폼을 단순히 "머신러닝 솔루션을 만드는 엔진"으로 정의한다. 이 기사에서는 가트너의 정의를 확대해 데이터 과학 업무팀이 코드를 공동 작업하고 직접 배포해 데이터 과학 솔루션을 안내할 수 있는 모든 것을 포함했다. 데이터 과학 플랫폼은 상대적으로 덜 성숙했고 아직은 묘책이 없음을 기억하는 것이 중요하다. 테셀라 애널리틱스(Tessella Analytics)의 수석 분석 전략가인 매튜 존스는 <컴퓨터월드UK(ComputerworldUK)>와의 인터뷰에서 "데이터 과학은 플러그 앤드 플레이가 아니다"고 말했다. 이어서 "플랫폼은 아웃소싱해도 괜찮다. 하지만, 존재하는 데이터와 컨텍스트를 이해하는 사람은 교육을 받아야 한다. 기술 공급 업체에게 데이터 과학을 아웃소싱하는 경우 비즈니스와 데이터를 확실히 이해해야 한다"고 밝혔다. 이를 염두에 두고 오픈소스부터 기존 솔루션 업체까지 현재 기업이 가장 많이 사용하는 데이터 과학 플랫폼을 소개한다.   1. H2O.ai H2O.ai는 기업이 비즈니스 문제에 신속하고 확장할 수 있는 예측 분석을 적용하도록 지원하는 오픈소스 시스템 학습 플랫폼이다. 이 플랫폼의 명성은 점점 더 올라가고 있으며, 이전 버전은 가트너 매직 쿼드런트에서 비저너리로 선정됐으며 2018 데이터 과학 및 머신러닝 플랫폼 매직 쿼드런트에서 리더로 꼽혔다. 가트너는 딥러닝, 머신러닝 자동화, 하이브리드 클라우드 지원, 오픈소스 통합에 대한 기술 역량과 이베이, 캐피탈원, 컴캐스트를 포함한 고객사를 위한 강력한 지원을 높이 평가했다. 코드 중심 툴체인은 뛰어난 유연성과 확장성을 제공하지만 가장 사용자 친화적인 제품은 아니다. 2. 마이크...

2018.04.19

머신러닝, 예측 알고리즘 모델링에 탁월한 '데이터 과학 플랫폼 9선'

데이터 과학자들이 알고리즘을 구축하고 배포할 수 있게 해주는 플랫폼은 기업이 이전보다 더 빠르게 데이터를 조작하려고 하면서 더 중요해졌다. 가트너는 데이터 과학 플랫폼을 단순히 "머신러닝 솔루션을 만드는 엔진"으로 정의한다. 이 기사에서는 가트너의 정의를 확대해 데이터 과학 업무팀이 코드를 공동 작업하고 직접 배포해 데이터 과학 솔루션으로 안내할 수 있는 모든 것을 포함했다. 데이터 과학 플랫폼은 상대적으로 덜 성숙했고, 아직은 묘책이 없음을 기억하는 것이 중요하다. 테셀라 애널리틱스(Tessella Analytics)의 수석 분석 전략가인 매트 존스는 <컴퓨터월드UK>와의 인터뷰에서 "데이터 과학은 플러그 앤드 플레이가 아니다"고 말했다. 이어서 "플랫폼은 괜찮지만, 존재하는 데이터와 맥락을 이해하는 사람이 교육을 받아야 한다. 기술 공급 업체에게 데이터 과학을 아웃소싱하는 경우 비즈니스와 데이터를 확실히 이해해야 한다"고 밝혔다. 이를 염두에 두고 오픈소스부터 기존 솔루션 업체까지 오늘날 기업이 가장 많이 사용하는 데이터 과학 플랫폼을 소개한다. 1. 마이크로소프트 애저 머신러닝 마이크로소프트는 데이터 과학자에게 애저 머신러닝 플랫폼을 사용해 예측 분석을 실제 환경에 구축하고 배포하기 위한 완벽하게 관리되는 클라우드 서비스를 제공한다. 이 플랫폼에는 파이썬이나 R과 같이 원하는 언어로 사용자 정의 코드를 지원하는 패키지가 내장돼 있으며 데이터 과학자들이 업무를 시작할 때 쓸만한 많은 문서가 제공된다. 애저 플랫폼은 데이터 과학자가 모델을 프로덕션에 웹 서비스로 신속하게 설치한 다음 애저 마켓플레이스에서 모델을 공유하도록 해준다. 고객으로는 카니발 크루즈(Carnival Cruises), JLL, 후지쯔가 있다. 2. SAS 바이야 분석 및 BI 공급 업체 SAS는 바이야(Viya) 플랫폼을 통해 데이터 과학 및 ...

SAS 다타이쿠 도미노 데이터랩 데이터 과학 분석 예측 기계학습 스플렁크 모델링 클라우데라 데이터 과학자 애저 마이크로소프트 IBM 가트너 래피드마이너

2017.11.28

데이터 과학자들이 알고리즘을 구축하고 배포할 수 있게 해주는 플랫폼은 기업이 이전보다 더 빠르게 데이터를 조작하려고 하면서 더 중요해졌다. 가트너는 데이터 과학 플랫폼을 단순히 "머신러닝 솔루션을 만드는 엔진"으로 정의한다. 이 기사에서는 가트너의 정의를 확대해 데이터 과학 업무팀이 코드를 공동 작업하고 직접 배포해 데이터 과학 솔루션으로 안내할 수 있는 모든 것을 포함했다. 데이터 과학 플랫폼은 상대적으로 덜 성숙했고, 아직은 묘책이 없음을 기억하는 것이 중요하다. 테셀라 애널리틱스(Tessella Analytics)의 수석 분석 전략가인 매트 존스는 <컴퓨터월드UK>와의 인터뷰에서 "데이터 과학은 플러그 앤드 플레이가 아니다"고 말했다. 이어서 "플랫폼은 괜찮지만, 존재하는 데이터와 맥락을 이해하는 사람이 교육을 받아야 한다. 기술 공급 업체에게 데이터 과학을 아웃소싱하는 경우 비즈니스와 데이터를 확실히 이해해야 한다"고 밝혔다. 이를 염두에 두고 오픈소스부터 기존 솔루션 업체까지 오늘날 기업이 가장 많이 사용하는 데이터 과학 플랫폼을 소개한다. 1. 마이크로소프트 애저 머신러닝 마이크로소프트는 데이터 과학자에게 애저 머신러닝 플랫폼을 사용해 예측 분석을 실제 환경에 구축하고 배포하기 위한 완벽하게 관리되는 클라우드 서비스를 제공한다. 이 플랫폼에는 파이썬이나 R과 같이 원하는 언어로 사용자 정의 코드를 지원하는 패키지가 내장돼 있으며 데이터 과학자들이 업무를 시작할 때 쓸만한 많은 문서가 제공된다. 애저 플랫폼은 데이터 과학자가 모델을 프로덕션에 웹 서비스로 신속하게 설치한 다음 애저 마켓플레이스에서 모델을 공유하도록 해준다. 고객으로는 카니발 크루즈(Carnival Cruises), JLL, 후지쯔가 있다. 2. SAS 바이야 분석 및 BI 공급 업체 SAS는 바이야(Viya) 플랫폼을 통해 데이터 과학 및 ...

2017.11.28

회사명:한국IDG 제호: ITWorld 주소 : 서울시 중구 세종대로 23, 4층 우)04512
등록번호 : 서울 아00743 등록일자 : 2009년 01월 19일

발행인 : 박형미 편집인 : 박재곤 청소년보호책임자 : 한정규
사업자 등록번호 : 214-87-22467 Tel : 02-558-6950

Copyright © 2022 International Data Group. All rights reserved.

10.4.0.31