Offcanvas

��������� ������������

마냥 웃을 순 없다··· AI 그리고 ML 프로젝트, 얼마나 '안전'한가? 

인공지능과 머신러닝은 많은 이점을 제공한다. 하지만 동시에 새로운 취약점을 가져오기도 한다. 이러한 위험을 최소화할 방법을 살펴본다.  신기술을 도입할 때 보안을 뒷전으로 미루는 경우가 많다. 새로운 제품이나 서비스를 최대한 빠르게, 그리고 저렴하게 선보이는 게 더 중요하다고 판단해서다. 게다가 ‘완벽한 보안’은 시간이 오래 걸리고 비용도 많이 든다.  인공지능(AI)과 머신러닝(ML) 역시 보안 취약점이 있다. 이전의 기술 발전과 유사한 취약점과 설정 오류를 보이기도 하고, 이들만의 고유한 보안 위험이 있기도 하다.  만약 AI 중심 디지털 트랜스포메이션을 추진한다면 기업은 이러한 위험을 직면하게 될 가능성이 크다. 美 IT 컨설팅 회사 부즈 앨런 해밀턴(Booz Allen Hamilton)의 수석 과학자 에드워드 라프는 “서둘러선 안 되는 영역이다”라고 말했다.   AI와 ML은 다른 기술보다 더 많고 복잡한 데이터도 필요하다. 따라서 수학자와 데이터 과학자들이 개발한 알고리즘은 학문적인 연구 프로젝트에서 시작되는 경우가 많다. 라프는 “최근에서야 연구진들은 AI에 보안 문제가 있다는 것을 알게 됐다”라고 언급했다.  아울러 이들의 용량 및 처리 요건은 또 다른 수준의 복잡성과 취약점을 추가한다. 클라우드 플랫폼이 워크로드를 처리하는 경우가 많기 때문이다. 정리하자면, AI 도입에 있어 사이버보안이 가장 우려되는 위험인 것은 당연하다.  2020년 7월 발표된 딜로이트(Deloitte)의 한 보고서에 따르면 AI를 도입한 기업 가운데 62%가 사이버보안 위험을 가장 큰 혹은 주요 위험으로 보고 있지만, 이 위험을 해결할 준비가 됐다고 답한 기업은 39%에 불과했다. 이 문제를 더욱더 복잡하게 만드는 것은 사이버보안 자체에서 AI가 많이 사용된다는 점이다. 따라서 AI 경험이 풍부해질수록 기업들은 사이버보안 위험을 더 걱정한다고 딜로이트의 기술, 미디어, 통신 부문 전무이사 제프 룩스는 전했...

인공지능 머신러닝 AI ML 보안 보안 취약점 사이버보안 디지털 트랜스포메이션 데이터 과학 딜로이트 데이터 보호 전도 공격 설명가능성 블랙박스 AI 데이터 포이즈닝 편향 모델 드리프트 클라우드

2020.11.30

인공지능과 머신러닝은 많은 이점을 제공한다. 하지만 동시에 새로운 취약점을 가져오기도 한다. 이러한 위험을 최소화할 방법을 살펴본다.  신기술을 도입할 때 보안을 뒷전으로 미루는 경우가 많다. 새로운 제품이나 서비스를 최대한 빠르게, 그리고 저렴하게 선보이는 게 더 중요하다고 판단해서다. 게다가 ‘완벽한 보안’은 시간이 오래 걸리고 비용도 많이 든다.  인공지능(AI)과 머신러닝(ML) 역시 보안 취약점이 있다. 이전의 기술 발전과 유사한 취약점과 설정 오류를 보이기도 하고, 이들만의 고유한 보안 위험이 있기도 하다.  만약 AI 중심 디지털 트랜스포메이션을 추진한다면 기업은 이러한 위험을 직면하게 될 가능성이 크다. 美 IT 컨설팅 회사 부즈 앨런 해밀턴(Booz Allen Hamilton)의 수석 과학자 에드워드 라프는 “서둘러선 안 되는 영역이다”라고 말했다.   AI와 ML은 다른 기술보다 더 많고 복잡한 데이터도 필요하다. 따라서 수학자와 데이터 과학자들이 개발한 알고리즘은 학문적인 연구 프로젝트에서 시작되는 경우가 많다. 라프는 “최근에서야 연구진들은 AI에 보안 문제가 있다는 것을 알게 됐다”라고 언급했다.  아울러 이들의 용량 및 처리 요건은 또 다른 수준의 복잡성과 취약점을 추가한다. 클라우드 플랫폼이 워크로드를 처리하는 경우가 많기 때문이다. 정리하자면, AI 도입에 있어 사이버보안이 가장 우려되는 위험인 것은 당연하다.  2020년 7월 발표된 딜로이트(Deloitte)의 한 보고서에 따르면 AI를 도입한 기업 가운데 62%가 사이버보안 위험을 가장 큰 혹은 주요 위험으로 보고 있지만, 이 위험을 해결할 준비가 됐다고 답한 기업은 39%에 불과했다. 이 문제를 더욱더 복잡하게 만드는 것은 사이버보안 자체에서 AI가 많이 사용된다는 점이다. 따라서 AI 경험이 풍부해질수록 기업들은 사이버보안 위험을 더 걱정한다고 딜로이트의 기술, 미디어, 통신 부문 전무이사 제프 룩스는 전했...

2020.11.30

데이터 준비에서 HW 선택까지··· '머신러닝 트레이닝' 안내서

머신러닝(ML)을 제대로 활용하기 위한 기본 전제는 모델을 적절히 훈련시키는 것이다. 데이터로부터 신뢰할 만한 결과를 도출해내는데 참고할 만한 12가지 조언을 정리했다.    ML은 오늘날 가장 실용적인 AI 응용 기술이라고 말할 수 있다. ML시스템은 명시적인 프로그래밍 없이, 데이터에 알고리즘을 적용해 인사이트를 도출한다. 즉, 데이터를 활용해 질문에 답을 찾아낼 수 있다. 오늘날 많은 기업들이 고객 구매 패턴에서 유지보수 및 관리에 대한 예측까지 다양한 문제에 ML을 적용해 활용하고 있다. 그러나 ML 시스템이 질문에 제대로 대답하기 위해서는 데이터와 결과에 대한 트레이닝이 실시되어야 한다. 여기에는 이유가 있다. ML 시스템은 질문에 대답을 할 때 사용할 데이터와 같은 종류의 데이터를 ‘체험’하는 방법을 통해 데이터에서 예측을 할 수 있는 능력을 키울 수 있기 때문이다. 이를테면 구성요소에 장애가 발생할지 여부를 예측하는 경우, 먼저 기능을 하는 구성요소와 장애가 발생한 구성요소 모두에서 센서 판독 데이터를 수집 공급하는 방법으로 ML 시스템을 트레이닝해야 한다. 지루한 단계이지만, ML을 정확히 구현하는데 아주 중요한 단계이다. 이 단계가 잘못되면, 시스템이 원하는 결과를 만들어내지 못한다. ML을 트레이닝 하면서 자주 저지르는 실수들이 있다. 또 ML 시스템을 배포하기 훨씬 전에 내려야 할 결정들이 있다. 이를 나중에 다루려 할 경우 대가를 치를 수 있다. 머신러닝을 훈련시킬 때 알아야 할 사항들을 정리했다.  데이터 품질 확보 일단 데이터가 제대로 준비해야 ML 시스템 트레이닝을 시작할 수 있다. 인텔 AI 제품 그룹의 세일즈 강화 디렉터인 에릭 가드너는 “데이터를 올바르게 준비하는데 많은 시간이 소요되지만, 이 부분이 간과되는 경우가 많다. 현대적인 데이터 인프라 구축, 수집 및 생성할 데이터 파악, 클린업에 많은 시간이 소요될 수 있다”라고 말했다. 여기에는 중복 데이터, 손상 데이터, 누락 데이터 문제...

훈련 데이터 세트 트레이닝 데이터 품질 편향 데이터 포이즈닝 전이 학습 합성 데이터

2020.05.08

머신러닝(ML)을 제대로 활용하기 위한 기본 전제는 모델을 적절히 훈련시키는 것이다. 데이터로부터 신뢰할 만한 결과를 도출해내는데 참고할 만한 12가지 조언을 정리했다.    ML은 오늘날 가장 실용적인 AI 응용 기술이라고 말할 수 있다. ML시스템은 명시적인 프로그래밍 없이, 데이터에 알고리즘을 적용해 인사이트를 도출한다. 즉, 데이터를 활용해 질문에 답을 찾아낼 수 있다. 오늘날 많은 기업들이 고객 구매 패턴에서 유지보수 및 관리에 대한 예측까지 다양한 문제에 ML을 적용해 활용하고 있다. 그러나 ML 시스템이 질문에 제대로 대답하기 위해서는 데이터와 결과에 대한 트레이닝이 실시되어야 한다. 여기에는 이유가 있다. ML 시스템은 질문에 대답을 할 때 사용할 데이터와 같은 종류의 데이터를 ‘체험’하는 방법을 통해 데이터에서 예측을 할 수 있는 능력을 키울 수 있기 때문이다. 이를테면 구성요소에 장애가 발생할지 여부를 예측하는 경우, 먼저 기능을 하는 구성요소와 장애가 발생한 구성요소 모두에서 센서 판독 데이터를 수집 공급하는 방법으로 ML 시스템을 트레이닝해야 한다. 지루한 단계이지만, ML을 정확히 구현하는데 아주 중요한 단계이다. 이 단계가 잘못되면, 시스템이 원하는 결과를 만들어내지 못한다. ML을 트레이닝 하면서 자주 저지르는 실수들이 있다. 또 ML 시스템을 배포하기 훨씬 전에 내려야 할 결정들이 있다. 이를 나중에 다루려 할 경우 대가를 치를 수 있다. 머신러닝을 훈련시킬 때 알아야 할 사항들을 정리했다.  데이터 품질 확보 일단 데이터가 제대로 준비해야 ML 시스템 트레이닝을 시작할 수 있다. 인텔 AI 제품 그룹의 세일즈 강화 디렉터인 에릭 가드너는 “데이터를 올바르게 준비하는데 많은 시간이 소요되지만, 이 부분이 간과되는 경우가 많다. 현대적인 데이터 인프라 구축, 수집 및 생성할 데이터 파악, 클린업에 많은 시간이 소요될 수 있다”라고 말했다. 여기에는 중복 데이터, 손상 데이터, 누락 데이터 문제...

2020.05.08

IDG 설문조사

회사명:한국IDG 제호: ITWorld 주소 : 서울시 중구 세종대로 23, 4층 우)04512
등록번호 : 서울 아00743 등록일자 : 2009년 01월 19일

발행인 : 박형미 편집인 : 박재곤 청소년보호책임자 : 한정규
사업자 등록번호 : 214-87-22467 Tel : 02-558-6950

Copyright © 2022 International Data Group. All rights reserved.

10.4.0.31