머신러닝(Machine Learning)을 보면 마술 상자가 생각난다. 데이터를 집어넣으면 예측이 나온다. 하지만 머신러닝에 마술은 없다. 데이터와 알고리즘, 그리고 알고리즘을 통해 데이터를 처리함으로써 만들어지는 모델이 있을 뿐이다.
머신러닝을 통해 데이터에서 실체적 인사이트를 도출하는 일을 하는 사람에게는 이 프로세스가 블랙박스처럼 느껴져서는 안 된다. 상자 내부에 대해 잘 이해할수록 데이터가 예측으로 변환되는 과정의 각 단계를 더 정확히 이해할 수 있고 예측이 갖는 힘은 더 강력해진다.
데브옵스 분야에는 소스 코드에서 배포에 이르기까지 소프트웨어의 진행 과정을 설명하는 “빌드 파이프라인”이란 것이 있다. 개발자에게 코드 파이프라인이 있다면, 데이터 과학자에게는 머신러닝 솔루션을 통해 흐르는 데이터 파이프라인이 있다. 이 파이프라인을 마스터하는 것은 머신러닝 자체를 세부적으로 파악하기 위한 효과적인 방법이다.
머신러닝을 위한 데이터 소스와 흡수
위키본 리서치(Wikibon Research)의 분석가 조지 길버트가 설명했듯이 머신러닝 파이프라인은 4개의 단계로 구성된다.
1. 데이터 흡수
2. 데이터 준비(데이터 탐색 및 거버넌스 포함)
3. 모델 학습
4. 예측 제공
머신러닝 파이프라인을 시작하기 위해서는 학습할 데이터와 학습을 수행할 알고리즘, 두 가지가 필요하다. 대부분의 경우 데이터는 다음과 같은 둘 중 하나의 형태로 제공된다.
1. 어딘가에서 이미 수집 및 집계 중인 라이브 데이터. 이 데이터를 사용해서 정기적으로 업데이트되는 예측을 수행할 계획이다.
2. 다운로드해서 그 상태 그대로 사용하거나, 기존 데이터 소스에서 ETL 작업을 통해 얻는 “동결된” 데이터 집합.
동결된 데이터의 경우 일반적으로 한 가지 종류의 처리만 한다. 이 데이터로 모델 학습을 수행하고 모델을 배포하며 필요에 따라 주기적으로 모델을 업데이트한다. 그러나 라이브 또는 “스트리밍되는” 데이터의 경우 이 데이터로 모델과 결과를 얻기 위한 방법은 두 가지다. 첫 번째는 데이터베이스와 같은 어느 장소에 데이터를 저장(“데이터 레이크”)한 다음 나중에 이 데이터를 사용해 분석을 하는 방법이다. 두 번째는 스트리밍 데이터가 들어오는 대로 모델을 학습시키는 것이다.
머신러닝 솔루션 제공업체 빅ML(BigML)의 찰스 파커가 설명한 바와 같이 스트리밍 데이터를 사용한 학습은 다시 두 가지 형식으로 구분된다. 하나는 정기적으로 신선한 데이터를 모델에 공급해서 예측을 수행하는 시나리오로, 이 경우 기반 모델을 크게 조정하지는 않는다. 두 번째는 오래된 데이터는 그다지 쓸모가 없어서 수시로 신선한 데이터를 사용해서 완전히 새로운 모델을 학습시키는 시나리오다.
알고리즘을 일찌감치 선택하는 것이 중요한 이유가 여기에 있다. 증분식 재교육을 지원하는 알고리즘도 있지만 그렇지 않아서 새 데이터로 처음부터 다시 재교육해야 하는 경우도 있다. 항상 신선한 데이터를 스트리밍해서 모델을 재교육할 예정이라면, 증분 재교육을 지원하는 알고리즘을 선택해야 한다. 예를 들어 스파크 스트리밍(Spark Streaming)이 이러한 사용 사례를 지원한다.
머신러닝을 위한 데이터 준비
학습에 사용할 데이터 소스를 확보했다면 다음 단계는 이 데이터를 학습에 사용할 수 있도록 하는 것이다. 데이터에서 일관성을 확보하는 과정을 통틀어 정규화라고 한다. 실제 세계의 데이터에는 노이즈가 많다. 데이터베이스에서 가져오는 데이터는 어느 정도의 정규화가 된 데이터라고 가정할 수 있다. 그러나 많은 머신러닝 애플리케이션은 데이터 레이크 또는 다른 이질적 소스에서 직접 데이터를 가져올 수도 있는데, 이 경우 프로덕션 사용에 맞게 데이터가 정규화되어 있다는 보장이 없다.
파이썬 머신러닝(Python Machine Learning)의 저자 세바스티안 라슈카는 정규화와 일반적인 데이터 집합 유형에서 정규화를 달성하는 방법을 세부적으로 다룬 글을 쓴 적이 있다. 라슈카가 사용한 예제는 파이썬을 중심으로 하지만 기본 개념은 보편적으로 적용된다. 머신러닝 환경에 따라 정규화가 명시적인 단계로 존재하기도 한다. 예를 들어 마이크로소프트 애저 머신러닝 스튜디오(Azure Machine Learning Studio)에는 데이터 실험에 추가할 수 있는 “데이터 정규화(Normalize Data)” 모듈이 따로 있다.
정규화가 항상 필요할까? MIT AI 박사 과정에 있는 프랭크 더논코트는 스택 오버플로우(Stack Overflow)의 이 주제에 관한 심층적인 토론에서 정규화가 항상 필요한 것은 아니지만 “해서 해로운 경우는 거의 없다”고 말했다. 더논코트는 중요한 점은 특정 사용례에서 정규화가 가진 이점을 아는 것이라고 말했다. 인공 신경망의 경우 정규화가 필수는 아니지만 때에 따라 유용할 수도 있다. 그러나 K 평균 클러스터링 알고리즘으로 모델을 구축하는 경우 정규화가 핵심적이다.
‘데이터에서 배우기(Leaning from Data)’의 공동 저자 맬릭 매그돈 이스마일에 따르면. 정규화가 바람직하지 않은 한 가지 경우는 “데이터의 규모에 의미가 있을 때”다. 예를 들어 “여신 승인에서 수입이 부채보다 두 배로 중요하다면 수입의 크기가 부채의 두 배가 되는 것이 적절할 것이다.”
데이터 흡수와 준비 단계에서 고려해야 할 또 한 가지는 데이터와 정규화, 또는 두 가지 모두를 통해 모델에 편견이 유입될 수 있다는 점이다. 머신러닝의 편견은 현실적인 문제를 일으킬 수 있다. 따라서 그러한 편견이 존재할 가능성이 있는 지점을 찾아서 대처하는 방법을 알면 도움이 된다. 깨끗한(읽을 수 있고 일관적인) 데이터라고 해서 무조건 편견이 없는 데이터로 간주해서는 안 된다.
머신러닝 모델 학습
데이터 집합을 완성했다면 다음 차례는 데이터를 사용해서 예측을 수행할 모델을 생성하는 학습 프로세스다. 일반적으로 여러 가지 알고리즘을 시도해 보고 데이터에 가장 잘 맞는 하나를 찾는다.
초매개변수
앞서 언급했듯이 알고리즘 선택은 해결하려는 문제의 유형뿐만 아니라 원하는 모델이 일괄 데이터로 한꺼번에 학습시킬 모델인지 증분적으로 재교육할 모델인지에 따라서도 달라진다. 모델 학습의 또 다른 핵심적인 측면은 결과 모델의 정확도를 높이기 위해 학습을 튜닝하는 방법, 즉 초매개변수화(hyperparameterization)다. 머신러닝 모델을 위한 초매개변수는 알고리즘에서 결과 모델을 생성하는 방법을 통제하는 설정이다. 예를 들어 K 평균 클러스터링 알고리즘은 데이터의 유사성을 기준으로 데이터를 여러 그룹으로 묶는다. 따라서 K 평균 알고리즘을 위한 하나의 초매개변수는 검색할 클러스터의 수가 될 것이다.
일반적으로 최선의 초매개변수 선택은 알고리즘에 대한 경험에서 나온다. 때에 따라서는 몇 가지 변형을 시도해서 어느 것이 당면한 문제에 맞는 실질적 결과를 산출하는지 확인해야 한다. 일부 알고리즘 구현의 경우 초매개변수 자동 튜닝이 가능한 단계까지 발전했다. 예를 들어 머신러닝을 위한 레이(Ray) 프레임워크에는 초매개변수 최적화 기능이 있다. 구글 클라우드 ML 엔진은 학습 작업에 사용할 수 있는 초매개변수 튜닝 옵션을 제공한다. 또한 FAR-HO라는 패키지는 텐서플로우용 초매개변수 최적화 툴을 제공한다.
병렬 처리
모델 학습을 위한 라이브러리 중 상당수는 병렬 처리를 활용해서 여러 CPU, GPU 또는 노드로 계산을 분산함으로써 학습 프로세스의 속도를 높일 수 있다. 병렬 학습용으로 사용 가능한 하드웨어가 있다면 사용하라. 추가되는 각 컴퓨팅 디바이스마다 거의 선형적으로 속도가 향상된다. 학습에 사용 중인 머신러닝 프레임워크에서 병렬 학습을 지원할 수도 있다. 예를 들어 MXNet 라이브러리는 병렬로 모델 학습이 가능하다. 또한 MXNet은 학습 병렬화의 두 가지 주요 방법론인 데이터 병렬 처리와 모델 병렬 처리를 모두 지원한다.
구글 브레인팀 소속의 알렉스 크리체프스키는 네트워크 학습 병렬화에 관한 논문에서 데이터 병렬 처리와 모델 병렬 처리의 차이점에 대해 설명했다. “데이터 병렬 처리에서는 여러 작업자가 여러 데이터 예제로 모델을 학습시키지만 일관적인 모델 학습을 보장하기 위해 모델 매개변수를 동기화해야 한다.” 즉, 데이터를 분할해서 여러 디바이스에서 학습할 수 있지만, 각 노드에서 생산되는 모델을 상호 동기화해서 서로 두드러지게 다른 예측 결과를 내지 않도록 해야 한다. 노드 간 데이터 동기화를 위한 여러 가지 전략을 적용해서 이 방법으로 텐서플로우를 사용할 수 있다.
모델 병렬 처리에서는 여러 작업자가 모델의 서로 다른 각 부분을 학습시키는데, “한 작업자가 학습시키는 모델 부분에 다른 작업자에 의해 학습되는 모델 부분의 출력이 필요할 때마다” 동기화 상태를 유지해야 한다. 일반적으로 이 방법은 반복 신경망과 같이 상호 입력되는 여러 개의 계층이 모델 학습에 포함될 때 사용된다. 토치(Torch) 프레임워크를 포함한 많은 프레임워크가 현재 두 가지 접근 방법을 모두 지원하므로 파이프라인을 구축하는 두 가지 방법을 모두 익혀 두는 것이 좋다.
머신러닝 모델 배포
파이프라인의 마지막 단계는 학습된 모델 배포, 또는 길버트가 “머신러닝 파이프라인 : 구성 요소의 중국식 메뉴” 논문에서 표현한 대로 하면 “예측 및 서비스” 단계다. 수신되는 데이터를 대상으로 학습된 모델을 실행해서 예측을 생성한다. 예를 들어 얼굴 인식 시스템의 경우 얼굴 사진 또는 셀카 사진이 데이터로 수신되면 다른 얼굴 사진에서 추론한 모델을 통해 예측을 수행할 수 있다.
클라우드 배포
이 예측을 어디서, 어떻게 수행하느냐는 파이프라인의 또 다른 부분을 구성한다. 가장 일반적인 시나리오는 RESTful API로 클라우드 인스턴스에서 예측을 제공하는 것이다. 이 경우 클라우드 서비스의 모든 이점을 누릴 수 있다. 예를 들어 수요를 충족하기 위해 인스턴스를 추가로 가동할 수 있다. 또한 클라우드 호스팅 모델에서는 학습 데이터, 학습되는 모델, 예측 인프라와 같은 파이프라인의 많은 부분을 같은 곳에 둘 수 있다. 데이터를 많이 이동할 필요가 없어 모든 작업의 속도가 더 빨라진다. 모델을 같은 환경에서 재교육하고 배포할 수 있으므로 증분적 모델 재교육을 더 신속하게 수행할 수 있다.
클라이언트 디바이스 배포
때에 따라 클라이언트에 모델을 배포해서 예측을 수행하는 것이 더 나을 수도 있다. 적합한 사용처는 대역폭을 아껴야 하는 모바일 앱, 그리고 네트워크 연결이 보장되지 않거나 안정적이지 않은 앱이다.
다만 로컬 머신에서 수행되는 예측의 품질은 상대적으로 떨어질 수 있다는 점을 유의해야 한다. 로컬 스토리지의 제약으로 인해 배포되는 모델의 크기가 작고, 이것이 예측 품질에 영향을 미칠 수 있기 때문이다. 다만 속도와 정확도를 약간 타협하는 방법으로 스마트폰과 같은 보편적인 디바이스에서 꽤 정확한 모델을 배포하는 것도 가능해지고 있다. 사용하는 애플리케이션이 로컬 배포 모델을 정기적으로 갱신해서 납득할 만한 정확도를 얻을 수 있는지 확인해 보는 것이 좋다. 그렇다면 데이터 연결이 없는 상태에서도 앱에서 예측을 수행할 수 있다.
클라이언트에 모델을 배포하는 방식에는 또 다른 장애물도 있다. 모델이 여러 위치에 배포될 수 있으므로 배포 프로세스가 복잡해질 수 있다는 점이다. 하나의 학습된 모델에서 하나의 대상 하드웨어, OS 또는 애플리케이션 플랫폼으로 가는 일관적인 경로가 없다. 머신러닝 모델을 사용한 앱 개발이 확산되면서 일관적인 배포 파이프라인을 찾기 위한 노력이 계속되겠지만, 이 복잡성이 빠른 시일 내에 사라질 가능성은 희박하다.
현재와 미래의 머신러닝 파이프라인
파이프라인이라는 용어는 한쪽 끝에서 반대쪽으로의 끊김 없는 단방향 흐름을 암시한다. 현실에서 머신러닝 흐름은 순환에 더 가깝다. 데이터가 들어와서 모델 학습에 사용되고 이후 그 모델의 정확성이 평가된다. 새 데이터가 들어오고 그 데이터의 의미가 발전함에 따라 모델이 재학습된다. 지금으로서는 머신러닝 파이프라인을 각각의 관심이 필요한 별개의 단계들로 보는 수밖에 없다. 각 단계가 서로 다르게 기능해서가 아니라 이러한 모든 조각을 잇는 종단간 통합이라고 할 만한 것이 거의 없기 때문이다. 달리 말하자면 사실 파이프라인은 없다. 그저 우리가 흔히 파이프라인이라고 여기는 연속된 일련의 활동이 있을 뿐이다.
Edgio
IT 리더는 고급 보안 정책, 효율성 향상 및 사용자 경험 개선을 중 하나만 택해야 하는 것이 아닌 이 모든 것을 모두 개선할 수 있습니다. 통념상 보안 비용과 사용자 경험 사이에는 적절한 균형이 필요하다고 알려져 있습니다. 마치 보안이 디지털 상호 작용에 대한 세금인 것처럼 다뤄져 왔지만, 이제는 구시대적인 발상에서 벗어날 때입니다. Foundry에 따르면, 올해 기술 예산 증가 요인의 1순위는 사이버 보안 개선으로 꼽혔습니다. 2023년 CEO의 IT 최우선 과제는 다음과 같습니다: 1. IT와 경영 조직의 협업 강화 2. IT와 데이터 보안을 업그레이드하여 기업 리스크 감소 3. 고객 환경 개선 고급 보안 정책, 효율성 향상, 애플리케이션의 안정성 및 성능 향상을 통해 보다 나은 사용자 경험을 실현시킬 수 있습니다. 어떤 대가를 치르거나 절충안을 선택하지 않아도 됩니다. 보안의 역설 "트레이드오프" 사고방식을 이해하기 위해서는 '보안의 역설'을 살펴봐야 합니다. 사이버 공격은 매년 기하급수적으로 증가하고 있습니다. NETSCOUT에 따르면 DDoS 공격은 3초마다 1건씩 발생하며, MITRE는 2022년에 2만 5,000건 이상의 새로운 공통 취약성 및 노출(CVE)을 보고했는데, 이는 2021년보다 전년 대비 24% 증가한 수치입니다. 대부분의 조직에게 이제 사이버 공격은 발생 여부의 문제가 아니라 언제 발생하느냐의 문제가 되었습니다. 최근의 공격 사례들과 통계들을 보며 리더들은 종종 보안 솔루션 체인을 구현하여 과도하게 보상하는 경향이 있으며, 결국에는 새로운 공격으로부터 보호하고 공격 시 서비스 중단을 방지하기 위해 일관성을 잃은 여러가지 솔루션이 겹쳐 쌓이게 됩니다. 체인이 가장 약한 고리보다 강할 수 없습니다. 이렇게 분리된 솔루션은 보안 계층 간에 지연 시간 및 성능 병목 현상을 더하고 단일 장애 지점을 생성하여 온라인 비즈니스의 속도와 가용성에 영향을 미치게 됩니다. 여기에서 보안 역설이 생겨납니다. 조직이 네트워크와 애플리케이션을 보호하려는 시도가 어쩌면 자신을 해칠 수 있다는 것입니다. 데이터 침해로 인한 비용 보안의 암묵적인 비용 외에도, 조직을 공격할 때 발생하는 데이터 침해로 인한 실제 비용은 얼마나 될까요? IBM의 연간 데이터 침해 보고서에 따르면 2022년의 평균 데이터 침해 비용은 435만 달러로 사상 최고치를 기록했습니다. Gartner는 DDoS 공격으로 인한 다운타임 비용을 시간당 30만 달러로 추산했습니다. 이 수치에는 브랜드의 명성과 고객에 대한 잠재적인 손상이 포함되어 있지 않습니다. CIO Insight는 31%의 소비자가 보안 위반으로 인해 해당 기업과의 거래를 중단했다고 보고했습니다. 이 중 상당수는 브랜드에 대한 신뢰를 잃었다고 말했습니다. 또한 당연하게도 성능 저하는 이탈율을 높이고 전환율은 낮춥니다. 세분화된 보안 솔루션의 여러 레이어로 인해 운영 복잡성은 증가하고, 애플리케이션 성능은 저하됩니다. 사이버 공격의 빈도가 증가함에 따라 이러한 요소들이 고객 경험과 온라인으로 신속하고 안전하게 온라인에서 비즈니스를 전개하는데 부정적인 영향을 미치는 것은 당연합니다. 그럼에도 한가지 좋은 소식은 포괄적인 보안 접근 방식을 통해 공격이 수익에 도달하기 전에 신속하게 탐지하고 완화할 수 있다는 것입니다. 올바른 통합 보안 솔루션을 사용하면 성능과 고객 환경도 개선될 수 있습니다. 통념을 뒤집어 보다 앞서 언급한 바와 같이 기업은 성능, 운영 효율성 및 고객 환경을 개선하면서 보안을 강화할 수 있습니다. 하지만 ‘트레이드오프’ 없이 이를 달성할 수 있는 방법은 무엇일까요? 광범위한 글로벌 분산 플랫폼을 기반으로 구축된 전체적인 엣지 지원 보안 솔루션을 채택하여 최신 사이버 보안 위협을 해결하고 단일 장애 지점이나 성능 병목 현상 없이 네트워크 및 애플리케이션을 포괄적으로 보호할 수 있습니다. 엣지를 지원하는 포괄적인 보안 솔루션의 이점은 다음과 같습니다: · 가동 시간 보장을 위한 대규모 확장 및 복원력 · 지능형 규칙 실행으로 위협 탐지 속도 향상 · 엣지 로직 및 CI/CD 워크플로우와의 통합으로 운영 개선 · 성능 및 사용자 환경을 개선하기 위해 소스단에서 공격 완화 간편한 통합 및 자동화 기능을 제공하는 보안 솔루션은 IT 워크플로우를 향상시키고 보안 업데이트를 신속하게 구현하여 변화하는 위협 환경에 대응할 수 있도록 지원합니다. 에지오의 플랫폼은 개발자가 애플리케이션 성능과 보안을 관리할 수 있는 가시성과 제어 기능을 제공합니다. 결과적으로 성능과 보안에 대한 통념을 뒤집는 것은 실제로 가능한 일이지만, 올바른 보안 솔루션을 갖추는 것이 중요합니다. 올바른 보안 솔루션은 궁극적으로 비용을 절감하고 운영 효율성을 높이며 고객 환경을 개선하는 동시에 데이터, 브랜드 및 수익을 보호할 수 있습니다. 이는 조직 전체에 윈윈이 됩니다. 에지오 Security를 통해 웹 애플리케이션 및 API 성능의 놀라운 개선을 경험해 보시기 바랍니다.
Edgio
보안 공격의 빈도는 점점 증가하고 있으며 기업 운영에 부정적인 영향을 줄 수 있습니다. 더 이상 지체하지 마세요. 지금 다양한 엣지 보안 구성 요소를 통합 제공하는 솔루션을 고려하세요. 기존의 IT 보안 방법에는 점점 더 많은 결함이 발생하고 있으며 위협의 규모와 정교함도 계속 증가하고 있습니다. 넷스카우트(NETSCOUT)의 조사에 따르면 3초마다 한 건의 DDoS 공격이 발생하고 있습니다. 사이버 보안 및 인프라 보안 기관은 최근 알려진 익스플로잇 취약점 카탈로그에 66개의 새로운 취약점을 추가했으며, 2022년에는 새로운 일반 취약점 및 노출(CVE)이 전년 대비 25% 이상 증가할 것으로 예상하고 있습니다. 고객과 더 가까운 네트워크 엣지에서 제공되는 새로운 보안 기법이 보안 위협의 증가에 대응하는 효과적인 방법으로 떠오르고 있습니다. 최신 사이버 보안 위협은 기존 보안 방법의 결함을 드러냅니다 방화벽과 클라우드 스토리지라는 두 가지 고객 데이터 보안 방법을 고려해 보겠습니다. 방화벽은 최신 위협으로부터 보호하는 데 적합하지 않습니다. 방화벽은 IT 인프라, 서버, 데이터베이스를 보호하기 위한 것입니다. 하지만 기업이 이 보안 방법만 사용하는 것은 동작 감지기, 알람 또는 기타 안전 장치 없이 집의 문과 창문을 열어두는 것과 같습니다. 클라우드 기반 스토리지는 로컬(사용자 수준) 데이터 손실이나 파괴로부터 데이터를 보호하지만, 악의적인 제3자에게는 점점 더 매력적인 공격 대상입니다. IBM의 데이터 유출 비용 보고서에 따르면 데이터 유출의 45%가 클라우드에서 발생했습니다. 데이터센터 방화벽은 매우 민감한 데이터를 보관하는 집 안의 금고라고 생각하면 됩니다. 방화벽은 단 하나의 방어선으로, 뚫리면 막대한 비용이 발생할 수 있습니다. 실제로 데이터 유출 사고의 평균 비용은 430만 달러에 달합니다. 네트워크 다운타임이 발생하면 분당 9,000달러의 비용이 발생할 수 있습니다. 엣지 보안의 가치 엣지 보안은 커뮤니티의 게이트와 창문의 알람과 같이 보다 정교한 장벽을 포함하는 넓은 영역을 포괄합니다. 위협이 감지되면 실시간으로 알림을 받고 더 높은 정확도로 대규모로 즉시 규칙을 배포할 수 있습니다. 엣지 보안 제품도 더욱 발전하여 AI 및 기타 도구를 활용하여 위협에 지능적으로 대응합니다. 예를 들어 엣지 보안 제품은 강력한 봇넷 공격, 제로데이 위협, 크리덴셜 스터핑, CVE, 분산 서비스 거부(DDoS) 공격 등 고객의 특정 시스템과 데이터를 표적으로 삼는 다양한 유형의 공격을 식별하고 완화하도록 설계되었습니다. AI/ML 및 트래픽 행동 모델링을 활용하여 사람의 상호작용을 모방하려는 봇을 식별하는 것도 가능합니다. 이러한 수준의 보안은 엣지 외부에서는 찾아볼 수 없습니다. 인도의 대표적인 증권 거래소인 봄베이 증권 거래소(BSE)는 엣지 보안을 구현한 후 실시간으로 위협을 탐지하고 60초 이내에 보안 규칙을 배포하며 인프라 비용을 50% 이상 절감했습니다. 사용자는 모든 장소에서 데이터 프라이버시 보호를 기대하고 있습니다. 신뢰를 잃는 것은 곧 딜 실패를 의미합니다. PCI Pal에 따르면 소비자의 83%는 보안 침해가 발생한 직후 해당 기업과의 비즈니스를 중단하며, 이 중 21% 이상은 다시는 해당 기업과 거래하지 않는다고 합니다. 엣지 보안 제품은 캐시된 콘텐츠 위에 추가적인 보안 계층을 추가하고, 고객이 의존하는 타사 SaaS/PaaS 파트너에게 검증된 또 다른 보안 계층을 제공합니다. 엣지에 보안을 추가하여 SecOps 업무생산성 제고 보안 운영을 엣지에 통합하면 몇 분 안에 글로벌 도메인 전체에 안전한 업데이트를 구현할 수 있습니다. 성숙한 엣지 제품을 사용하면 감사 모드에서 수정 사항을 미리 보고 모든 변경 사항에 대해 A/B 테스트하거나 가상 패치를 수행할 수 있으므로 변경 사항을 적용하기 전에 그 영향을 파악할 수 있습니다. 변경 사항을 배포한 후 오류를 식별하는 대신 원하는 영향을 확인할 때까지 빠르게 검증하거나 반복할 수 있으므로 오버헤드를 줄일 수 있습니다. 이는 비즈니스 운영에 지장을 주지 않으면서 신속하게 대응해야 하는 제로데이 익스플로잇 대응에 특히 중요합니다. 조치 취하기 보안 공격의 빈도가 증가하고 있으며 언제든 조직에 발생할 수 있으므로 조치를 미루지 마세요. 다양한 엣지 보안 구성 요소를 통합한 솔루션을 고려하세요. 먼저, PCI DSS 엔드투엔드 암호화를 사용하여 물리적 네트워크를 보호하세요. 또한 DDoS 보호, 오리진 쉴드, DNS 관리를 사용하여 오리진 공격으로부터 데이터를 보호해야 합니다. 마지막으로, API를 보호하는 WAAP, 봇 관리, 레이어 7 DDoS 보호로 애플리케이션을 보호하세요. 엣지 보안의 선두주자인 에지오는 고객의 특정 환경을 검토하고 고객의 요구 사항을 충족하도록 솔루션을 조정합니다. 에지오는 액세스 제어, API 보안, 속도 제한기, 고급 봇 관리, 사용자 지정 규칙, 관리 규칙을 사용하여 모든 트래픽 보호 계층을 관리하여 보안 운영 팀이 보안 위협에 신속하게 대응할 뿐만 아니라 사전 예방적으로 조치를 취할 수 있도록 지원합니다. 에지오에 대해 자세히 알아보세요.
Edgio
경기 침체기에도 CIO는 견고한 운영을 유지해야 합니다. 이를 위해서는 엣지 지원 솔루션이 도움이 될 수 있습니다. 세계 경제는 불확실성의 한 가운데 놓여있고, IT 산업도 다른 모든 산업들과 마찬가지로 역풍을 맞고 있습니다. 실제로 최근 Gartner는 2023년에 IT 예산이 평균 2.2% 증가하는 데 그칠 것으로 예측하고 있는데, 이는 글로벌 인플레이션율 6.5%보다 낮습니다. 하지만 경제적 혼란을 겪는다고 해서 여러분의 경쟁자들이 기술에 대한 투자를 중단한다는 것을 의미하지는 않습니다. 그리고 여러분도 마찬가지입니다! CIO는 여전히 운영 효율성을 개선하기 위해 비용을 지출해야 합니다. 가능한 한 효율성을 높이고 중복성을 줄이기 위해 레거시 시스템을 현대화하고 도구를 합리화하는 데만 투자하면 됩니다. 경기 침체기에 IT 예산을 최대한 활용할 수 있는 몇 가지 팁을 소개합니다. 1. 엣지(edge)에 투자할 것 온프레미스 솔루션을 사용하고 있다면 지금이 바로 업그레이드 타이밍입니다. 최신 엣지 솔루션은 클라우드 기능을 확장하는 동시에 단편적인 솔루션들의 결합 비용을 줄이고, 서버 관리를 용이하게 할 수 있는 세대 교체를 의미합니다. 과거를 돌아보면, 클라우드의 첫번째 물결은 유연성과 TCO(총 소유 비용) 절감을 제공했습니다. 그러나 이러한 서비스들은 여전히 온프레미스 기술과 동일한 기본 요소입니다. 서버는 클라우드 서버(EC2 등)와 네트워크 연결 스토리지(S3 등)로 대체되었습니다. 트래픽이 급증하는 경우 클라우드는 더 많은 인프라를 프로비저닝할 수 있는 유연성을 제공하지만, 스케일업(및 스케일다운) 작업은 팀에서 직접 관리해야 합니다. 새로운 엣지 솔루션은 이를 추상화합니다. 개발자는 애플리케이션을 구축 후 서버를 관리할 필요 없이, 자동적으로 호스팅할 수 있습니다. 최신 엣지 플랫폼은 애플리케이션 툴을 통합하여 TCO를 절감하고, 효율성을 높이며, 오류를 줄일 수 있도록 설계되어, 개발 속도를 2배 이상 빠르게 합니다. 많은 기업들은 레거시 기술 스택을 업데이트하는 것이 수익 향상의 숨은 원천이 될 수 있다는 사실을 인지하고 못합니다. McKinsey에 따르면 개발 속도가 기업의 비즈니스 수익을 5배 향상시킬 수 있다는 사실을 쉽게 간과한다고 합니다. 2. 도구 비용에 유의할 것 DevOps 조직의 거의 절반은 25개의 툴을 사용하고, 41%는 610개의 툴을 사용합니다. 기업에서 연간 250만달러의 비용을 사용하는 셈입니다. 실제로 개발 및 운영팀의 69%는 숨겨진 비용, 보안 및 규정 준수 관리에 따른 유지보수 등의 이유로 여러가지 도구들을 통합하고자 합니다. 즉, 기업은 눈에 보이지 않는 "툴의 무질서한 증가세"를 부담하고 있으며, 이로 인해 TCO가 증가하고 기업의 ROI는 감소합니다. 서로 연결되어 있지 않은 3개의 툴이 혼재되어 있는 상태에서 이 툴들이 모두 매끄럽게 동작한다는 것을 보장하긴 어렵습니다. TCO를 절감하려면 실제로 다양한 툴을 통합하고 관리할 수 있는 툴이 필요합니다. 즉, 여러 공급업체의 제품을 구매하는 대신 총체적인 통합 플랫폼에 투자해야 합니다. 3. 보안을 소홀히 하지 않을 것 새로운 CVE와 제로 데이 공격은 매년 더 많이 발견되고 있습니다. 위협이 여러분의 구성원 보다 빠르게 증가하고 있는 것입니다. 보안을 소홀히 해서는 안됩니다. 확실한 것은 다른 기업들은 절대 소홀히 하고 있지 않다는 것입니다. 실제로 보안 개선은 2023년도 기술 투자의 첫번째 항목으로 꼽힙니다. 다른 기업들은 어떻게 하고 있을까요: CIO의 71%가 사내 조직의 보안을 양호 또는 우수하다고 평가하고 있습니다. 그러나 43%는 미래에 대한 준비가 되어 있지 않다고 느끼고 있습니다. 왜 그럴까요? 현명한 투자와 지출을 위해 다음의 질문에 대해 고민해 보십시오. 여러분의 공급업체는 엣지에서 증가하는 대규모 공격을 차단하고 최고 수준의 신뢰성과 성능을 유지할 수 있는 네트워크 규모를 갖추고 있습니까? 끊임없이 진화하는 위협에 대응하기 위해 자동화 및 머신러닝을 사용하고 있습니까? 네트워크 전체에 가상 패치를 적용하고 WAAP 룰셋을 업데이트하여 제로데이 위협을 즉시 완화할 수 있습니까? 단순하고 예측 가능한 가격의 셀프 서비스를 제공하는 유연한 계약 모델이 있습니까? 이 중 하나 이상의 답변이 "아니오"인 경우 기존 솔루션을 재평가해야 합니다. 엣지의 자동 운영을 통해 마찰이 일어나는 지점을 줄일 수 있는 솔루션을 고려할 때입니다. 결론 때로는 경기 침체기에 최고의 출발점이 탄생하기도 합니다. 아이러니하게도 통제 불능의 기술 투자에 대한 가장 현명한 대안 또한 기술 투자, 즉 경쟁업체를 뛰어넘어 수익 증대를 이끌 기술에 투자해야 합니다. 한시 바삐 나무를 잘라야 하는 상황에 톱을 정비하는데 시간을 허비할 수는 없기 때문입니다. 미래를 생각하는 기업이라면 엣지에서만 제공할 수 있는 자동화된 확장 운영으로, 마찰이 발생하지 않도록 하는 방법을 모색해야 합니다. 효율성, 컴플라이언스 준수, 비용 절감을 위해 애플리케이션 보안과 성능을 개발 프로세스에 통합하는 엣지 지원 솔루션을 고민해 보시기 바랍니다. 에지오는 웹 앱과 API를 위한 수직 통합형 엣지 솔루션을 사용하여 글로벌 엣지 네트워크를 운영하고 있습니다. 자세한 내용은 여기를 클릭해 주세요.